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Testing for the Cointegrating Rank of a VAR 
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Tests for the cointegrating rank of a vector autoregressive process are considered that allow for 
possible exogenous shifts in the mean of the data-generation process. The break points are assumed 
to be known a priori. It is proposed to estimate and remove the deterministic terms such as mean, 
linear-trend term, and a shift in a first step. Then systems cointegration tests are applied to the 
adjusted series. The resulting tests are shown to have known limiting null distributions that are free 
of nuisance parameters and do not depend on the break point. The tests are applied for analyzing 
the number of cointegrating relations in two German money-demand systems. 

KEY WORDS: 	 Cointegration; Money-demand analysis; Testing for cointegration; Vector autore- 
gressive process. 

Many economic time series exhibit breaks or shifts in 
their levels that are not consistent with standard types of 
data-generation processes (DGP's). Such breaks are often 
caused by exogenous events that have occurred during the 
observation period. For example, the German unification 
has caused shifts in several macroeconomic time series such 
as gross national product (GNP) and measures of the money 
stock. In this example the timing and the reasons for the 
shifts are known. In other situations, neither the timing nor 
whether a shift actually has occurred are known at the out- 
set of an analysis. 

Corresponding to the various types of structural changes 
and problems related to them, there is an extensive litera- 
ture dealing with the consequences of structural shifts for 
estimation and testing procedures in univariate and multi- 
variate time series models as well as in regression mod- 
els for time series variables [e.g., see Hack1 and Westlund 
(1989) for a large number of references to the earlier liter- 
ature]. In particular, in many studies testing for unit roots 
and breaks in univariate time series is considered. Exam- 
ples are Perron (1989, 1990), Perron and Vogelsang (1992), 
Rappoport and Reichlin (1989), Zivot and Andrews (1992), 
Banerjee, Lumsdaine, and Stock (1992), Amsler and Lee 
(1995), and Ghysels and Perron (1996) to name just a few. 
In these works, different assumptions regarding the DGP 
are made. For instance, the break point may be known or 
unknown, it may be a shift in the level of a series, or it 
may be a break in the deterministic trend component. Struc- 
tural shifts in the context of cointegration analysis were 
considered, for example, by Quintos (1998), Seo (1998), 
Hansen (1992), Gregory and Hansen (1996), Campos, Er- 
icsson, and Hendry (1996), Johansen and Nielsen (1993), 
and Inoue (1999), among others. Quintos and Seo focused 
on changes in the cointegration or adjustment parameters, 
whereas Hansen, Gregory and Hansen, and Campos et al. 
discussed tests for cointegration in a single-equation frame- 
work. In contrast, Johansen and Nielsen (1993) studied the 

consequences of structural breaks in a systems context and 
derived likelihood ratio (LR) tests for the number of cointe- 
grating relations in a system of variables. Inoue (1999) also 
considered testing for the cointegrating rank of a system. 
He assumed, however, that the break is present under the 
alternative only. 

The overall message from these studies is that structural 
breaks can distort standard inference procedures substan- 
tially and, hence, it is necessary to make appropriate ad- 
justments if structural shifts are known to have occurred or 
are suspected. If there is just one break point in the observa- 
tion period, it may be tempting to analyze the two regimes 
before and after the shift separately. This may, however, re- 
sult in a substantial loss in efficiency and/or power. There- 
fore, procedures that take structural changes into account 
by adjusting the inference methods are often preferable to 
eliminating parts of the sample. 

In this study we will consider the problem of how to 
test for the number of cointegrating relations in a system 
of variables if some of them have a shift in the mean at a 
known time point. This situation is relevant, for instance, in 
the aforementioned case of German data if the sampling pe- 
riod covers the German unification. Assuming that the DGP 
is a finite-order vector autoregressive (VAR) process with a 
shift in the mean, tests for the number of cointegrating rela- 
tions will be proposed with an asymptotic null distribution 
that is free of nuisance parameters and does not depend on 
where the break point has occurred. In contrast to the as- 
sumption of Inoue (1999), the shift is allowed to be present 
both under the null and under the alternative hypothesis. 
The fact that the null distribution does not depend on the 
break point contrasts with the tests analyzed by Johansen 
and Nielsen (1993), whose asymptotic null distribution de- 
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pends on when the shift has occurred. If the break point 
is assumed to be known, this does not necessarily mean 
that the tests depend on unknown nuisance parameters. It 
means, however, that new critical values have to be ob- 
tained for each specific situation. Even if just a few new ob- 
servations become available, generating new critical values 
will generally be necessary to perform the tests. In contrast, 
the tests proposed in the following have a known asymp- 
totic distribution that does not depend on the break date 
so that no new simulations are required. Tables with crit- 
ical values are available elsewhere in the literature. More- 
over, our tests can be adopted for time series with more 
than one shift in the mean or to series with single outlying 
observations. 

The idea underlying our new tests is to estimate and re- 
move the deterministic parts including the shifts in a first 
step and then perform a test for the cointegrating rank on 
the adjusted series. The deterministic part of the DGP may, 
in fact, include a linear time trend in addition to shifts in 
the mean term. Similar ideas were used by Amsler and Lee 
(1995) in unit-root tests in the presence of structural breaks 
and by Liitkepohl and Saikkonen (2000) and Saikkonen 
and Liitkepohl (in press) to construct tests for VAR pro- 
cesses with deterministic linear trends and without struc- 
tural shifts. Because we will refer to the latter two articles 
several times in the following, we will abbreviate them as 
L&S and S&L, respectively. 

The structure of the article is as follows. In Section 1, the 
DGP is precisely specified and the assumptions underlying 
our analysis are laid out. The estimation of the parameters 
of the deterministic parts is discussed in Section 2, and the 
cointegration tests are presented in Section 3. A simulation 
study exploring the small-sample properties of our new tests 
is described in Section 4, and examples based on German 
macro data are given in Section 5. Conclusions follow in 
Section 6. The proofs of our theorems are provided in Ap- 
pendix A, and the sources of the data used in the empirical 
example are given in Appendix B. 

The following general notation is used. The lag and dif- 
ferencing operators are denoted by L and A, respectively; 
that is, for a time series or stochastic process yt we have 
Lyt = yt-1 and Ayt = yt - y t - ~ .  The symbol I(d) de- 
notes an integrated process of order d; that is, the process 
is stationary or asymptotically stationary after differencing 
d times but it is still nonstationary after differencing just 
d - 1 times. Convergence in distribution or weak conver- 
gence is signified by %. The trace and the rank of the ma- 
trix A are denoted by tr(A) and rk(A), respectively. More- 
over, / I  . I denotes the Euclidean norm. If A is an (n x m) 
matrix of full column rank (n > m), we denote an 'orthog: 
onal complement by AL so that Al is an (n x (n - m)) 
matrix of full column rank and such that A'Al = 0. The 
orthogonal complement of a nonsingular square matrix is 
0, and the orthogonal complement of a zero matrix is an 
identity matrix of suitable dimension. An (n x n)  identity 
matrix is denoted by I,. LS, GLS, and RR are used to abbre- 
viate least squares, generalized least squares, and reduced 
rank, respectively. LR and LM tests are short for likelihood 
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ratio and Lagrange multiplier tests. DGP stands for data- 
generation process, and ECM abbreviates error-correction 
model. A sum is defined to be 0 if the lower bound of the 
summation index exceeds the upper bound. 

1. THE MODEL 

Suppose an observed n-dimensional time series yt = 

(ylt , . . . ,ynt)' (t = 1 , .. . ,T)  is generated by the following 
mechanism: 

where pi and Si (i = 0, 1) are unknown (n x 1) parameter 
vectors and dot and dlt are dummy variables defined as 

i1, t = T o  
dot = (1.2) 

0, t # T o  

and 

that is, dot is an impulse dummy and dlt is a step dummy 
variable. The associated terms allow taking into account 
sudden changes in the mean of the process that occur, for 
instance, in German macroeconomic time series at the time 
of the reunification. 

The term xt is an unobservable error process that is as- 
sumed to have a VAR(p) representation, 

Here the A, are (n x n)  coefficient matrices and, for sim- 
plicity, we assume that xt = 0 for t 5 0 and E~ -NID(0,R); 
that is, the E~ are independent, identically distributed (iid) 
Gaussian vectors with zero mean and covariance matrix R. 
The normality assumption is made here for convenience 
although it could be replaced by an iid assumption and suf- 
ficient moment conditions. The assumption regarding the 
initial values is also a convenient simplification. The asymp- 
totic results derived later remain valid if the initial val- 
ues are assumed to be from a fixed probability distribution 
that does not depend on the sample size. The usual error- 
correction form of (1.4), obtained by subtracting xt-l from 
both sides of (1.4) and rearranging terms, is given by 

wheren = -(I,-Al - . . . -A,)  a n d r j  = - (A j+ l+ . . .+  
A,) ( j  = 1 , . . . , p  - 1) are (n x n)  matrices. 

We assume that xt is at most I(1) and cointegrated with 
cointegrating rank r.  This implies in particular that the 
Granger representation theorem of Johansen (1995, chap. 
4) is assumed to hold. Hence, the matrix ll can be written 
as 
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where a and p are (n x r) matrices of full-column rank. As from the model; that is, p1 = 0may be assumed a priori. 

is well known, P1xt and A x t  are then zero mean (asymp- This case will be briefly discussed later on. 

totically) stationary processes. Moreover, defining For our analysis, it is convenient to define the lag poly- 


nomial 

where Et is a zero mean (asymptotically) stationary 
process. 

Now we consider the dummy variables dot and dl t .  We 
assume that the values of the integers Toand Tl are known 
a priori and, if yt is observed for t = 1 , . . . , T, then To5 T 
and Tl 5 T . The case To= Tl is possible unless To= Tl = 
T.We exclude this latter possibility by assuming Tl < T - p .  
It is also convenient to assume that To> p and Tl > p and, 
furthermore, that 

. Tllim -= a1 with 0< a1 5 1. (1.8)
T-im T 

In other words, the break point Tl may be thought of as 
occurring at a fixed proportion of the full sample size even 
if an asymptotic analysis is performed where T + co.Al-
ternatively, the break may be viewed as having occurred 
a fixed number of periods before the end of the sample 
period. In the latter case, a1 = 1. These assumptions for 
the integers To and Tl are not restrictive from a practical 
point of view. This is obvious for the aforementioned in- 
equalities. Condition (1.8) may look somewhat restrictive 
because it implies that the jump in the dummy d l t  is not 
allowed to take place at the beginning of the sample so that, 
for example, Tl would be only slightly larger than p. This 
would mean that the parameters po and So would become 
asymptotically indistinguishable. This problem can readily 
be handled by redefining d t l ,  however, so that it takes the 
value 1 for t < Tl and 0 for t 2 TI .Then the inequalities 
in (1.8) should be changed to 05 a l  < 1, and it is easy to 
see that our subsequent derivations apply with only minor 
and fairly obvious modifications. In summary, the preced- 
ing discussion shows that the jump in the dummy variable 
dl t  can also take place at the beginning or at the end of 
the sample but, for ease of exposition, we exclude one of 
these two possibilities. Thus, our assumptions about the in- 
tegers Toand Tl are quite general and weaker than in some 
previous studies in which condition (1.8) is required with 
0 < a1 < 1. Finally, note that we assume for convenience 
and for expository purposes that there is just one impulse 
dummy dot and one step dummy d l t .  It is not difficult to see 
that our results can be adapted to models with any number 
of (linearly independent) impulse dummies and step dum- 
mies. Moreover, our results can easily be modified to the 
case in which the model contains only step dummies or im- 
pulse dummies. It is also possible to exclude the trend term 

and notice that the relation between the two representations 
is given by 

Al = In + QP' +rl 
A .3 = ~ . - r , - ~ ,3 j = 2  , . . . ,p - i  


A, = -r p - 1 ,  (1.10) 


where II is expressed as in (1.6). Multiplying (1.1) by A ( L )  
yields 

where vo = -IIpo + (8+n ) p l  and v = - I Ip l .  To be able 
to write this model in a simpler form, define 

and 

Using (1.6), we can then write 

t = p +  l , p + 2 ,  . . . ,  (1.11) 

where v = -IIpO + 8 p 1 ,T = pipl, and 0 = PIS1. Notice 
that here Adl , t - j  is an impulse dummy, which takes the 
value 1 at t = TI+ j and 0 elsewhere. 

Equation (1.1 1) specifies an ECM for the observed series 
yt. We shall use this form of the model to obtain first-stage 
estimators for the parameters of the error process xt-that 
is, for a,p, ( j  = 1, .. . , p  - 1 ) ,  and L?.Some remarks 
on the ECM (1.11) and the estimation of its parameters are 
therefore in order. Using Equation (1.10) and the defini- 
tions, it can first be seen that a conventional RR regression 
cannot be used to obtain the ML estimators because there 
are nonlinear restrictions between the parameters in (1.1 1). 
To obtain the previously mentioned first-stage estimators, 
we shall simply ignore these restrictions. This should not 
cause any great loss of efficiency because the restrictions 
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occur in coefficient vectors of impulse dummies only. Be- 
fore computing the estimators, one should check, however, 
that the dummy variables on the right side of (I .  1 I)  are lin- 
early independent. Because both dot and Adlt are impulse 
dummies, it is possible that some impulse dummies appear 
twice in (I.  1 1) and can be combined. This, of course, has no 
effect on the estimation of the parameters a ,p,  rj,and R 
that are of interest at this point. For simplicity, we assume 
that all dummy variables in (1.1 1) are linearly independent. 
The assumption p < Tl < T -p guarantees that there can- 
not be linear dependencies between the step dummy dl,t-l 
and the impulse dummies. Such linear dependencies could 
be eliminated by excluding impulse dummies so that the 
assumption T I  < T - p is actually not needed here. It is 
convenient in proving Theorem 2.1, however, and is there- 
fore imposed because assuming that T I  < T - p seems 
harmless from a practical point of view. 

In the framework of our model, we are interested in test- 
ing whether the assumption made for the rank of the matrix 
II is correct. In other words, for some prespecified rank ro, 
we wish to consider testing the null hypothesis 

In this context it turns out to be very useful to make ex- 
plicit use of the assumption that the DGP is of the form 
(1.1). As will be seen later, it is then possible to obtain tests 
with convenient asymptotic properties. As mentioned in the 
introduction, our formulation of the model allows us to esti- 
mate the deterministic part of the DGP first and then apply 
cointegration tests to the process adjusted for determinis- 
tic terms. In Section 2, estimators of the parameters of the 
deterministic part will be presented, and the cointegration 
tests will be considered in Section 3. 

2. ESTIMATING THE PARAMETERS OF THE 
DETERMINISTIC PART OF THE MODEL 

We shall estimate the parameters pi and 6, ( i  = 0 , l ) in 
(1.1) by using a feasible GLS approach similar to that of 
S&L. Note that in our model GLS is not equivalent to LS es- 
timation of the parameters of the deterministic part despite 
the fact that all equations involve the same regressors. The 
reason is that the error term xt is autocorrelated and may 
in fact consist of integrated components. This means that 
LS and GLS are not even asymptotically equivalent (e.g., 
see Xiao and Phillips 1999 and the references therein). 

To derive our estimator of the parameters of the deter- 
ministic part we define 

1 for t > l  t for t 2 1 
aot = 

0 for t 5 0 
and alt = 

0 for t 5 0 

Multiplying (1.1) from the left by A ( L ) gives 

where the yt are set to 0 for t 5 0, Hit = A(L)ait, and 
Kit = A(L)dit , i  = 0 , l .  As in S&L, we also define the 

matrix 

with the property QQ' = R-l. Premultiplying (2.1) by Q' 
transforms the covariance matrix of the error term to an 
identity matrix so that, as required in GLS estimation, we 
have a transformation that results in a (multivariate) regres- 
sion model with standard properties of the error term. 

To make the preceding transformation feasible, suitable 
estimators of the parameters a ,p,  rj ( j  = 1, . . . , p  - I ) ,  
and R are needed. Such estimators can be obtained by an 
RR regression of (1.11) in the way discussed in Section 
1. These estimators are denoted by 6 ,b,Fj, and fi. Sub-
stituting them for the corresponding theoretical parameters 
in (1.10) gives estimators for the coefficient matrices A,. 
Denoting these estimators by A,, we can define A(L)  = -
I, - A I L  - . . .  - A,LP and, furthermore, at= A ( ~ ) a , t  
and Kit = A(L)& ( i  = 0 , l ) .Note that A(L)satisfies the 
cointegrating restrictions. Thus, we are able to construct a 
feasible analog of (2.1). Moreover, a suitable estimator of 
the matrix Q can be readily obtained by forming tiL from 
6 and replacing R,  a ,  and a 1  in the definition of Q by their 
estimators. If Q is used to denote the resulting estimator 
of Q, we can finally introduce the multivariate auxiliary 
regression model 

The LS estimators of the parameters pi and Si will be de- 
noted by fii and 8, ( i  = 0,  I ) ,  respectively. They are used 
in Section 3 to obtain tests for the cointegrating rank. It 
is, of course, apparent that the estimator 80 that estimates 
the coefficient vector of the impulse dummy dot cannot be 
consistent. From S&L it is also clear that the estimator fio 
is generally not consistent although it is consistent in the 
direction of p; that is, Pff io is a consistent estimator of Pipo. 
On the basis of this result, it is to be expected that the con- 
sistency properties of the estimators are similar to those 
of fro provided T - Tl +m. The asymptotic properties of 
the estimators p, and iiare given in the following theorem, 
whose proof requires suitable consistency results of the es- 
timators 6 ,b,Fj, and fi.These results are first stated in the 
following lemma. 

Lemma 2.1. Suppose that the assumptions made in Sec- 
tion 1 hold and the null hypothesis Ho(ro)is true. Suppose 
further that, if (1.8) holds with a1 = 1, then T - T I  either 
tends to infinity or converges to a finite constant. Define 
the (infeasible) estimators bC= b(tfp)-'and &( = tip'<, 
where t' = (P'P)-lPf. Then = GEP + O P ( T p 1 ) ,  = 
a + O ~ ( T - ~ / ~ ) ,Fj ( j  = I , .. . , p  -= rj+ O , ( T - ~ / ~ )  I ) ,  
and fi = R + O,(T- ' /~ ) .  

The lemma is proven in the Appendix. The results are 
similar to those one obtains from a model without dummy 
variables. They can be used to show that the same consis- 
tency properties apply with any normalization of the esti- 
mators (cf. Johansen 1995, p. 184). In the present context, 
the normalization does not matter, however, because we use 
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the estimators 6 and p in situations that are invariant to a 
particular normalization. Now we can state the properties 
of the estimators of the parameters of the deterministic part 
of (1.1). Again the proof is sketched in the Appendix. 

Theorem 2.1. Under the conditions of Lemma 2.1, 

(2.4)P1(bo- P O )  = o ~ ( T - ~ / ~ ) ~  

P;(fio - P O )  = Op( l ) ,  (2.5) 

and 

1 / 2  1 
( 1 - P ' (2.10) 

Here = 31(a!LBf11)-1a!Las before and quantifies 
converge joinfly in On 
A: --
LIUII. 

The properties of the estimators ,Lo and ,L1 are entirely 
similar to those obtained by S&L, theorem 1. Whereas ,G1 
is consistent, the same is not true for ,Lo.The latter is con- 
sistent only in the direction of P and not in the direction of 
DL.Even in the direction of f l l ,  however, the estimator bo 
is bounded in probability and this property turns out to be 
sufficient for our purposes. As to the estimators $0 and il, 
the obvious inconsistency of the former is implied by (2.6), 
while (2.7) and (2.8) show that the asymptotic behavior of 
the latter is similar to that of ,LO when T - Tl -+ oo or, 
in other words, when information on the parameter 61  in 
the direction of P increases with the sample size. A general 
conclusion from (2.7) and (2.8) is that the estimator i1is 
never consistent in the direction of P1 and it can also be 
inconsistent in the direction of /I if T - Tl does not go to 
infinity. As in the case of ,Lo, from our point of view it is 
important that the estimator i1is bounded in probability, 
particularly in the direction of P1. We will now discuss 
how these estimators can be used in constructing tests for 
the pair of hypotheses in (1.12). 

3. TEST PROCEDURES 

When the estimators a, and 8, (i = 0 , l )  are avail-
able, one can form a sample analog of the series xt as 
Zt = yt - fro - ,Lilt - dodot - didlt and use it to obtain 
LM-type or LR-type test statistics for the hypothesis Ho(ro) 
in the same way as L&S and S&L. The LM-type test statis- 
tic requires estimators of the parameters a,/?, and 0. The 
RR regression estimators based on (1.11) and discussed in 
Section 2 can be used for this purpose. Alternatively, the 
LR-type test statistic may be obtained in the same way as 
the usual LR test statistic from the feasible counterpart of 

the ECM (1.5); that is, it is determined from 

P-1  

A& = IIj.,-, + r,Ai.,-, + et ,  
j=1 

t = p + l , . . . ,T,  (3.1) 

where et is an error term defined explicitly in the Appendix. 
The following general formulation discusses LM- and LR- 
type test statistics obtained in both of the aforementioned 
ways. 

Let 5,p,and fi be any estimators of the parameters a,p, 
and 0, respectively, satisfying the consistency results in 
Lemma 1.1. Consider the auxiliary regression model 

P- 1 

where Qt = PI&,Ct = P>iit,and e,* = et - a(P- P)'2t-1. 
The LM-type test statistic of S&L is obtained by forming 
the usual LM test statistic of the multivariate linear model 
for the null hypothesis p* = 0 in (3.2). If the usual LR test 
statistic of the multivariate linear model is used instead, an 
asymptotically equivalent test statistic is obtained In gen- 
era1 this test statistic is not the LR test statistic based on 
(3.1). As shown by Saikkonen and Liitkepohl (1999), how- 
ever, this is actually the case if 6 ,p, and fi are RR regres- 
sion estimators based on (3.1). Thus, to be able to use the 
preceding general framework to construct the LR-type test 
based on (3.1), we have to show that the consistency re- 
sults of Lemma 2.1 hold for the RR regression estimators 
of a,  P, and 0 obtained from (3.1). This will be done in the 
Appendix. Thus, testing the null hypothesis p* = 0 in (3.2) 
by conventional methods of the multivariate linear model 
gives both the LM-type and the LR-type tests discussed by 
S&L. For convenience, the following test statistic assumes 
an LM-type (or Wald-type) form, but the LR-type form is, 
of course, asymptotically equivalent under the null hypoth- 
esis. 

Following S&L, we now introduce the test statistic 

where j* is the LS estimator of p* from (3.2) and 
rn 

t=p+l 

T T -1 T 

- i ( ) it*;-l 
t=p+l t=p+l t=p+l  

with = A?$-,: . . .: S&L also discussed 
an asymptotically equivalent variant of the preceding test 
statistic obtained by deleting the regressor Qt-l from (3.2). 
We shall not consider this modification because it was found 
to give very similar results in small samples. 

The LR-type statistic based on (3.1) is obtained in the 
usual way by solving the generalized eigenvalue problem 



det(nMTnl -An) = 0, where is the LS estimator of II 
obtained from (3.1), fi is the corresponding residual covari- 
ance matrix, and 

with AX,-1 = [As:-, : . . . : A2~-p+l]'. Denoting the re- 
sulting eigenvalues by i1> . . . > A,, the LR-type statistic 
becomes 

Now we can state the following theorem, where B(s) is an 
(n - ro)-dimensional standard Brownian motion. 

Theorem 3.1. If Ho(ro) in (1.12) is true, 

where B, (s) = B(s) - sB(1) is an (n - r0)-dimensional 
Brownian bridge and dB,(s) = dB(s) - dsB(1) is as 
in theorem 2 of S&L and theorem 5.1 of L&S. Note 
that JiB,(s) dB,(s)' abbreviates B(s) dB(s)' -

~ ( 1 )  - + ;B(I)B(I)'.J;: S ~ B ( S ) '  S,'B(S) d s ~ ( i ) l  

The limiting distribution obtained in Theorem 3.1 is free 
of unknown nuisance parameters and actually the same as 
the one obtained by S&L and L&S in a model without any 
dummy variables. Critical values are given in table 1 of 
L&S. Thus, in our framework, including step dummies and 
impulse dummies in the model and estimating their coeffi- 
cients has no effect on the limiting distribution of the coin- 
tegration tests. This is very convenient and contrasts with 
the LR tests proposed by Johansen and Nielsen (1993). They 
include dummy variables in the ECM for yt and show that 
in this case the asymptotic null distribution depends on the 
break point. Hence, a new set of critical values is required 
for each break point. Our theorem extends previous results 
of S&L who noticed that the limiting distribution of the 
corresponding tests for models without dummy variables is 
not affected by the limiting properties of the (GLS) estima- 
tor of the mean parameter PO. 

The preceding discussion also suggests that if the a pri- 
ori restriction pl  = 0 is employed in (1.1) and the GLS 
estimation of Section 2 as well as the preceding test proce- 
dure are modified accordingly, the limiting distribution of 
the resulting test statistic is the same as in a model with- 
out any deterministic terms-that is, the limiting distribu- 
tion is obtained by replacing the Brownian bridge B,(s) in 
Theorem 3.1 by the Brownian motion B(s). This situation 
was also studied by S&L and, from the proofs given in the 
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Appendix and in that article, it can be seen that the pre- 
ceding conclusion actually holds. The same result can also 
be obtained by replacing the GLS estimator considered in 
this article by one proposed by Saikkonen and Luukkonen 
(1997). This GLS estimation is similar to the one developed 
in Section 2 except that the estimator A(L) is obtained by 
ignoring the cointegration structure of (1.1 1) and applying 
LS. Note, however, that, to the best of our knowledge, this 
GLS estimation has not been studied in a model with a time 
trend. 

It may also be worth noting that seasonal dummy vari- 
ables may be included in the model. They may be treated 
in the same way as the other dummy variables. It can be 
shown that including them does not change the asymptotic 
properties of the tests. Seasonal dummies will be impor- 
tant in the context of the application discussed in Section 
5. The small-sample properties of our tests are considered 
in Section 4. 

4. SMALL-SAMPLE COMPARISON OF TESTS 

We have compared the properties of the LR and LM 
tests in a small Monte Carlo experiment. The simulations 
are based on the following bivariate process xt from Toda 
(1994, 1995), which was also used by L&S: 

For $1 = $9 = 1, a cointegrating rank of r = 0is obtained. 
In this case the process consists of two nonstationary com- 
ponents that are independent for 0 = 0, whereas they are 
instantaneously correlated for 0 # 0. The cointegrating rank 
is r = 1 if $z = 1 and I < 1. Furthermore, the process is 
I(0) with r = 2 if both and q2are less than 1 in absolute 
value. Because the test results are invariant to the param- 
eter values of the deterministic component, we use pi = 0 
and di = 0 (i = 0 , l )  throughout. In other words, the de- 
terministic part is actually 0. Thereby we can compare the 
performance of our tests with other tests that do not allow 
for shifts. 

Samples of sizes 100 and 200 plus 50 presample values 
starting with an initial value of 0 were generated. Thus, we 
are not using zero initial values in the actual samples in con- 
trast to the theoretical analysis of the previous sections. By 
considering nonzero initial values, we are able to check the 
robustness of the theoretical results to violations of the ini- 
tial value assumptions. The number of replications is 1,000. 
Rejection frequencies of the tests are given in Tables 1 and 
2. They are baszd on asymptotic critical values for a test 
level of 5%. The rejection frequencies are not corrected for 
the actual small-sample sizes because such corrections will 
not be available in practice. Comparing the power of tests 
that have unknown size is of limited value from a practi- 
cal point of view. Therefore, a minimal requirement for a 
test is that it observes the selected significance level at least 
approximately. 
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Table 1. Relative Rejection Frequencies of Test Statistics for DGP (4.1) 
With Cointegrating Rank r = 0 = g2 = l),0 = 0, T = 100, 

Nominal Sianificance Level .05 

Rank under Ho 
Assumed Test 
break point statistic ro = 0 ro = 1 

None LR~ohansen 
LRta 
LMta 

To = TI = 25 LR 
LM 

To = T7 = 50 LR 
LM 

To = TI = 75 LR 
LM 

For a given set of parameter values and a given sam- 
ple size, the results for the test statistics are based on the 
same generated time series. Hence, the entries in the ta- 
bles are not independent but can be compared directly. Still, 
for judging the results, it may be worth recalling that the 
standard error of an estimator of a true rejection proba- 
bility P based on 1,000 replications of the experiment is 
sp = @(I - P)/1,000 so that, for example, S.OS = .007. 
It is also important to note that in the simulations the tests 
were not performed sequentially. Thus, the results for test- 
ing Ho(l) :  rk(II) = 1 are not conditioned on the outcome 
of the test of Ho(0): rk(II) = 0. 

In the tables the performance of the tests that allow for a 
structural shift is compared to tests that allow for a linear 
trend only and not for shifts in the deterministic term. Note 
that in the literature on testing for a unit root, which may be 
regarded as a special case of testing for cointegration, it is 
a well-established fact that ignoring a structural change in 
the DGP can lead to substantial distortions (e.g., see Perron 
1989). Therefore, if a structural shift is suspected, one may 
want to allow for it. Then the question arises, "What are 
the implications of including a shift term if no shift has 
occurred?'The answer to this question can be explored by 
including tests that do not allow for a structural shift in 
a comparison. The tests denoted as LRJohansen, LRta, and 

LMt, are the appropriate LR and LM tests proposed by 
Johansen (1995) and S&L for the latter situation. In Table 
1, the true cointegrating rank is 0. Thus, the results for 
testing Ho(0): rk(II) = 0 give an indication of the actual 
sizes of the tests for a nominal size of 5%. It is seen that the 
location of the break point (To, TI) does not matter much 
for the size of the tests in samples with T = 100. The 
LM tests are generally a bit more conservative than the LR 
tests. This also holds for the tests that do not allow for a 
shift. In fact, whether or not a shift is accommodated does 
not matter much for the sizes of the tests. All tests tend 
to be very conservative if the rank is overstated in the null 
hypothesis (see ro = 1 in Table 1). 

In Table 2 we focus on the case in which a possible break 
occurs after three quarters of the sample. The location of the 
break point turned out to have little impact on the test per- 
formance. A break point closer to the end than to the begin- 
ning of the sample as in the table is relevant in the context 
of the empirical application of Section 5 and is therefore 
considered here. A test of ro = 0 shows the power of the 
tests when (GI( < 1.As expected, the LR tests have slightly 
larger power than the corresponding LM tests because they 
are less conservative. It is also seen that there is some gain 
in power if the a priori information is used that there is ac- 
tually no shift in the DGP. In other words, in terms of power 
LRJohansenand LRta outperform the LR and LM tests that 
allow for a shift. Notice, however, that LMta is less power- 
ful than LR. Thus, it pays to use LR-type tests rather than 
LM tests. Moreover, it is useful to take into account the 
prior information of no shift if such information is avail- 
able. In our particular DGP, the power is generally higher if 
there is more residual correlation (6' = .8). Both tests that 
allow for a shift tend to be conservative in checking the 
null hypothesis ro = 1. 

We have also performed the simulations with samples 
of the size T = 200. As expected, the power increases. The 
tests still tend to be conservative for ro = 1, however. We do 
not show the results because the marginal information con- 
tent does not justify the additional space needed. In Section 

Table 2. Relative Rejection Frequencies of Test Statistics for DGP (4.1) With Cointegrating Rank r = 0 (Q1 = 1)  
or 1 I ) ,  Q2 = 1, Sample Size T = 100, Break Point To = T1 = 75, Nominal Significance Level .05 

$ 1  = 1.0 = .95 = .9 $1 = .8 

Statistic ro = 0* ro = 1' ro = 0* ro = l* ro = O* ro = l* ro = 0" ro = l* 

* Rank specified in the null hypothesis 



5, we will apply our new tests to analyze the cointegrating 
ranks of actual economic systems. 

5. GERMAN MONEY-DEMAND SYSTEMS 

Based on a single equation analysis of Wolters, Teras- 
virta, and Lutkepohl (1998), Lutkepohl and Wolters (1998) 
constructed a small macroeconomic model to investigate the 
channels of German monetary policy. They built a vector 
ECM for M3, GNP, an inflation rate, an interest-rate spread 
variable, and import-price inflation. In a demand relation 
for M3, GNP is a proxy for the transactions volume, the 
inflation rate and the interest-rate spread are opportunity- 
cost variables, and the import-price inflation is included as a 
measure for the real exchange rate to account for the open- 
ness of the German economy. The variable M3 is used to 
measure the money stock because it used to be the target 
variable of the Deutsche Bundesbank in executing its mon- 
etary policy. The interest-rate spread and the import-price 
inflation variables turned out to be stationary, whereas the 
other three variables were found to be I(1) in the aforemen- 
tioned studies. Therefore, we shall first focus on M3, GNP, 
and the inflation rate in the following and investigate the 
number of cointegration relations among these variables. 
For illustrative purposes, we will then add the interest-rate 
spread to the system to check whether a further cointegra- 
tion relation is found by the tests. 

We use quarterly, seasonally unadjusted data for the pe- 
riod 1975 to 1996 as used by Lutkepohl and Wolters (1998). 
The initial period was chosen because the Bundesbank 
started its policy of monetary targeting in 1975. Specifi- 
cally the following variables are used: mt represents the 
logarithm of real M3, gnp t  is the logarithm of real GNP, 
rt is the difference between the average bond rate and the 
own rate of M3, and pt is the logarithm of the GNP defla- 
tor; hence, A p t  is the inflation rate that will be used here. In 
other words, the two systems of variables considered in the 
following cointegration analyses are yt = (mt,gnp t  ,A p t ) '  
and yt = (mt,g n p t ,  A p t ,  rt) ' .  The data sources are given 
in Appendix B. The variables are plotted in Figure 1. Ob- 
viously, mt and gnp t  have clear shifts in the third quarter 
of 1990. These shifts are due to the German reunification. 
Note that, although the political reunification took place in 
October 1990, the monetary unification occurred already on 
July 1, 1990. Since then, all variables refer to the unified 
Germany and, hence, the shift in the third quarter of 1990 
is quite natural. 

If the full sample is used in the following, the structural 
shifts in mt and gnp t  in 1990 have to be taken into account. 
Therefore, Lutkepohl and Wolters (1998) and Wolters et al. 
(1998) included a shift dummy dl t  = 0 until the second 
quarter of 1990 and d l t  = 1afterwards. They also included 
an impulse dummy dot = 1 in 1990(3) and 0 elsewhere. 
We will use these dummy variables in our analysis as well. 
Because mt and g n p ,  potentially have a deterministic trend 
term, we also include a linear trend in the models. In ad- 
dition we also need seasonal dummy variables for some of 
the series because our data are not seasonally adjusted and 
have quite pronounced seasonal components (see Fig. 1). In 
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i - interest io;? spread 

1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 

Figure 1. Time Series Analyzed. 

the following, we will estimate the parameters associated 
with the seasonal dummy variables by the GLS procedure 
described in Section 2 for the other parameters of the de- 
terministic part of the model. Then yt is adjusted for all 
deterministic terms including the seasonal terms to get &. 

Before we perform a cointegration analysis, some com- 
ments on the integration properties of the individual vari- 
ables are in order. They were investigated by Wolters et al. 
(1998), who applied augmented Dickey-Fuller (ADF) tests 
using only preunification data until 1989(4). Based on the 
reduced observation period, mt ,g n p t ,  and A p t  were found 
to be I(l), whereas there was evidence of rt being I(0). For 
the extended sampling period until 1996(4), we have con- 
firmed these results for A p t  and rt. Conventional ADF tests 
may be used for these variables because they do not have 
a shift due to the unification. On the other hand, the shift 
in mt and gnp t  has to be taken into account in unit-root 
tests. Therefore, we use our new tests for this purpose by 
checking H o :  rk(II) = 0 against H I :  rk(II) = 1 for the 
individual series. The results are shown in Table 3. In the 
table we also give results for the preunification period un- 
der the assumption that no shift has occurred in that period. 
Two different autoregressive orders are considered, and it is 
seen that the results are robust with respect to the order. In 
none of the cases can the unit root be rejected. Thereby the 
preunification results are also confirmed for these series. 
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Table 3. 	 Unit-Root Tests for German M3 and GNP Data 

Sample period Autoregressive 
Variable (deterministic terms) order LR* LW 

mt 	 1975(3)-1990(2)( T  = 60) p = 2  1.07 
1975(3)-1990(2) (T = 60) p = 4  .95 
(seas. dummies, lin. trend) 

1975(3)-1996(4) (T  = 86) p = 2 2.45 
1975(3)-1996(4) (T  = 86) p = 4 2.78 
(seas. dum., lin. trend, dot, d l t )  

gnpt 1975(3)-1990(2) (T  = 60) 1.42 
p = 41975(3)-1990(2) (T = 60) p = 2  1.06 

(seas. dummies, lin. trend) 

1975(3)-1996(4) (T  = 86) p = 2 2.03 
1975(3)-1996(4) (T  = 86) p = 4 1.13 
(seas. durn., lin. trend, dot, d l t )  

* Critlcal values: 6 83 (5%), 5.43 (10%) (from table 1 of L&S) 

We have also checked for seasonal unit roots using only 
preunification data. There is some evidence for a possible 
root at the semiannual frequency in grip,, as well as for 
roots at the annual frequencies in gnpt and A p t .  On the 
other hand, no seasonal unit roots are found in mt. Of 
course, rt  does not have a seasonal component (see also 
Fig. 1). Thus, the seasonal structure of the series seems to 
be quite different. Still, the possibility of seasonal cointe- 
gration between gnpt and A p t  cannot be excluded on the 
basis of these results. Nevertheless, we ignore this poten- 
tial problem in the following analysis, which is meant to 
illustrate our new tests. Clearly, we are far from having a 
suitable framework for analyzing seasonal cointegration in 
the presence of structural shifts [see Johansen and Schaum- 
burg (1999) for a discussion of seasonal cointegration]. 

In Table 4 the results of various cointegration tests for 
the three-dimensional system are provided. They are based 
on models of order p = 2, which was also used by Wolters 
et al. (1998). This order is recommended by the Hannan- 
Quinn criterion (HQ). Seasonal dummies and linear-trend 
terms, as well as dot and d l t ,  are included as deterministic 
terms in all models for the full sampling period. In addition 
to tests for the full period, we also give results for the pre- 
unification period using data up to 1990(2) only. In these 
tests the dummies dtt (i = 0 , l )  are not included. Obviously, 
one cointegration relation is found regardless of the obser- 
vation period. Moreover, for common significance levels 
both versions of the tests clearly reach the same conclusion 
regarding the cointegrating rank. Still it is pleasing that the 
new tests enable us to use the full-sample information. 

Table 4. Cointegration Tests for Three-dimensional 

System (mt, gnpt, Apt) 


1975(3)-1990(2) 1975(3)-1996(4) 
Critical values* (T = 60) (T = 86) 

Ho 90% 95% LR L M L R LM 

* From table 1 of L&S. 

Table 5. Cointegration Tests for Four-Dimensional 
System fmt, gnpt, Apt, rt) 

1975(3)-1990(2) 1975(3)-1996(4) 
Critical values* (T = 60) (T = 86) 

Ho 90% 95% LR L M L R L M 

* From table 1 of L&S 

A similar analysis was also performed for the four- 
dimensional system yt = (mt,gnpt ,A p t ,  r t ) ' .  The results 
are given in Table 5. The VAR order of 2 is chosen because 
it was also used for the three-dimensional system, although 
HQ now recommends a VAR order of 1. Because rt  was 
found to be stationary in the univariate analysis, one would 
expect to find a cointegrating rank of 2 for the present sys- 
tem, the second "cointegration relation" consisting of the 
stationary variable only. It turns out, however, that tests 
based on the preunification period clearly indicate a co- 
integrating rank of 1. It may be worth noting that the same 
result is obtained with the corresponding Johansen LR test. 
Extending the sample period to 1996, however, and includ- 
ing the shift dummy variables dot and dlt  in the system, 
the expected cointegrating rank of 2 is found. Thus, the re- 
sult for the shorter sampling period may be due to reduced 
power, and in this case it clearly pays to take full advantage 
of the available data. Interestingly, in this case the LM ver- 
sion of our test strictly speaking rejects one cointegration 
relation only at the 10% level although the test value is close 
to the 5% critical value. In contrast, the LR version rejects 
at the 5% level. This result reflects the reduced power of 
the LM tests found in the simulations of Section 4. 

6. CONCLUSIONS 

In this study we have proposed and applied tests for the 
cointegrating rank of a system of variables in the presence 
of structural shifts. Under the assumption that the break 
point is known a priori, we suggest estimating the determin- 
istic part of the DGP first, subtracting the estimated deter- 
ministic part from the original series, and then performing 
standard systems cointegration tests for the adjusted series. 
We have considered LR- and LM-type tests in this context 
and find that they have asymptotic null distributions that are 
tabulated elsewhere in the literature and do not depend on 
the break point. Hence, the tests are conveniently applied 
without the need for simulating new critical values. In a 
small simulation study, it is found that the LR versions of 
the tests tend to have more power than the LM versions. 
Therefore, the use of the LR-type tests is proposed. For 
illustrative purposes, the tests are applied to two systems 
of German macroeconomic variables that may be thought 
of as money-demand systems. It is found that taking into 
account the level shift in some of the series is necessary 
for proper inference regarding the cointegrating rank of the 
system. 
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APPENDIX A: PROOFS 

In the following proofs we will skip some of the details 
to save space. They can be found in the discussion-paper 
version of the article, which is available on request from 
the second author. 

Proof of Lemma 2.1 

It is not difficult to see that assuming pi and Si to be 
0 (i = 0 , l )  does not imply a loss of generality so that in 
(1.11) the true values of v, 7, 0, and yi j  are also all 0 and 
yt = xt can be assumed. Define 

Zit = [1:AY;-~ :. . . : AY;_,+~]' 

and set Zt = [Zit: Z;,]'. Then we can write Equation (1.1 1) 
as 

where +' = [PI: -7: -61, Qj = [a1: Qj2] with Qjl = [v: rl : 
. . . : rp- l ] ,  and Qj2 = [yo, : . . . : -yop:-ylo : . . . : yl,p-l]. The 
RR regression estimators of cu, $, and R can be obtained as 
follows. Define 

where N = T - p and Rot and Rlt are the LS residuals 
obtained by regressing Ayt and X t  on Zt, respectively. As 
is well known, the RR regression estimator of $ is based on 
the eigenvectors corresponding to the r largest eigenvalues 
of the determinantal equation 

(e.g., Johansen 1995, chap. 6, or Liitkepohl 1991, ap- 
pendix A.14). When the RR regression estimator of $ 
is available, those of cu and R are obtained by replacing 
$ by its estimator in the formulas Sol$($'S1l$)-l and 
Soo- Sol$($'S1l$)-l$'S1o, respectively. Recall that we 
have assumed that all impulse dummies in (1.1 1) are lin- 
early independent so that Soois nonsingular and the pre- 
ceding estimators are well defined. 

In the same way as in the proof of lemma 13.1 of Jo- 
hansen (1995), we now transform Equation (A.2). To this 

Journal of Business & Economic Statistics, October 2000 

end, we define the matrix 

Pre- and postmultiplying (A.2) by Ah and AT, respectively, 
gives 

The eigenvalues of (A.2) and (A.3) are identical and the 
eigenvectors of (A.3) are obtained from those of (A.2) by 
premultiplying by A,'. The next step is to study the weak 
limit of (A.3). For ease of exposition and without loss of 
generality, we shall assume that the initial values of xt are 
such that Pfxt and Axt are stationary. 

Next note that 

SOO= 300 + op(l)  and S O ~ A T= S O 1 ~ T+ op(l),  (A.4) 

where so0and solare analogs of Sooand Sol, respectively, 
obtained by omitting Zzt from (A.1) (i.e., Zt = Zit). The 
proof of (A.4) is a straightforward consequence of well- 
known limit theorems and the fact that Zzt is a vector of 
impulse dummies. 

From (A.4) we can conclude that the asymptotic behavior 
of the latter matrix in (A.3) is similar to that in the conven- 
tional model without any dummies. Thus, in the same way 
as Johansen (1995, pp. 158, 180), we find that 

where Cooand Cop are conditional covariance matrices de- 
fined by 

Next we have to consider the asymptotic behavior of the 
matrix A&SllAT.For this purpose we note that 

where yt = xt can be assumed. It appears convenient to 
analyze separately the cases in which a1 < 1 and a1 = 1 in 
(1.8). 

a, < 1. If a1 < 1, we can proceed in the same way as 
in the case of (A.4) and show that A&SllAT = AbsllAT + 
op(l)with Slldefined by omitting Zzt in the same way as in 
sooand Sol.Because we may assume that yt = xt,  the weak 
limit of A $ ? ~ ~ A ~can be obtained by arguments similar to 
those used in the conventional case (see Johansen 1995, pp. 
158, 180). It is first easy to check that the matrix A ~ S ~ ~ A ~  
is asymptotically block diagonal with the ( r  x r )  block in 
the upper left corner converging in probability to CD4.To 
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obtain the weak limit of the lower right corner, let W ( s )be 
an n-dimensional Brownian motion with covariance matrix 
R, denote by I(.) the indicator function, and let [c]be the 
integer part of c. From the multivariate invariance principle, 
we then find that 

where convergence is in the Skorohod topology of D[O,11. 
Hence, we can conclude that 

where G(s)= G(s)- G(u)  du (cf. Johansen 1995, pp. 
158, 180). 

Now, let 4 = -?, -81' be the (normalized) RR re- 
gression estimator of $ described previous to (A.2). In the 
same way as Johansen (1995, p. 180), we can then use (AS) 
and (A.8) to conclude that 

where the first equality follows from the definitions of AT 
and 4.This shows that the estimators &,?, and 8 are consis- 
tent of orders op (Tp1I2) ,  op (T-l ), and op( 1 ) ,respectively. 
(Recall that the true values of T and 0 are 0.) From these re- 
sults, it is further straightforward to show that &(; rj,and 
6 are also consistent (cf. Johansen 1995, p. 181). Before 
strengthening the preceding consistency results to the re- 
quired form, we shall briefly discuss similar intermediate 
results in the case a1 = 1. 

a ,  = 1. If a1 = 1, the previous derivation of (A.8) fails 
because the limit in (A.7) is not defined. Using arguments 
similar to those used to prove (A.4) and (A.8), however, it 
can be shown that instead of (A.8) we now have 

(A.10) 

where 0 < cl < 1 and Gl(s)= Gl(s)- Gl (u)  du with 
Gl  (s )  ((n -r + 1 )  x 1 )  defined by the first n - r + 1 compo-
nents of G(s).Thus, because we still have (AS), the only 
difference between the present case (a1 = 1 )  and the previ- 
ous one (al  < 1 ) is that the weak limit of hAbS11A~differs 

from its previous counterpart obtained in (A.8). This, how- 
ever, does not affect the arguments used to derive (A.9), 
which therefore hold in the present context as well. This 
implies that & and ? are consistent of the same orders as 
previously but, because Tl/T + 1, nothing can be con- 
cluded about the consistency of 8". Fortunately, however, 
the consistency of tiElrj,and 6 can still be proved in the 
same way as before. To see this, note that &( and p j  can be 
obtained by LS from the auxiliary regression model 

where GT = A ~ l 4 .Because A,'$ = [I,:O ] ' ,  ?jTis a consis- 
tent estimator of A,'$ [see (A.9)]. This consistency result 
and results about the second sample moments of the vari- 
ables in the auxiliary regression model (A. 1 l), used to show 
that (AS), (A.8), and (A.lO) hold, can be used to prove the 
consistency of the estimators and Pj (and also fi). Af-
ter this, the consistency of 6 can be proved in a standard 
fashion. 

To complete the proof, we have to establish the stated 
orders of consistency. Define 

TP>b< 
UT = T ~ I ~ ? '  ((n - r + 2) x r) .[ 1 

(T- ~ ~ ) ~ / ~ 8 '  

First, we wish to show that UT = Op( l ) ,which implies 
that T ( &- P )  = Op(l ) .Define the ((n + 2 )  x (n - r + 2 ) )  
matrix 

and notice that the matrix AT can be written as AT = [b: 
T-lI2BT]with b = [ P I  0 01'. Because UT is formed by 
the last n - r + 2 rows of T1I2A,l (4-$), it follows from 
the preceding definitions that (cf. Johansen 1995, p. 179) 
4 -$ = T-lBTUT.Using the first-order conditions for 4, 
the result UT = Op(l )and, hence, & = P + OP(Tp1)can 
now be established. Details, based on results of second sam- 
ple moments already used in previous steps of the proof, are 
very similar to those of Johansen (1995, p. 182). Moreover, 
because UT = Op( l )implies that GT in (A.l l )  is a consis- 
tent estimator of A,'$ of order o , ( T - ~ / ~ ) ,the remaining 
orders of consistency are straightforward to establish by 
considering the LS estimators obtained from (A.ll).  This 
completes the proof of Lemma 2.1. 

Remark A.1. (a) From the proof it is also possible to 
derive the limiting distributions of &( and and thereby 
similar results for other normalizations. The limiting distri- 
bution of ,& is mixed normal, but its explicit form differs 
for the cases al < 1 and al = 1 [cf. (A.8) and (A.10)]. 



- - -  

- - -  

462 Journal of Business & Economic Statistics, October 2000 

(b) From the proof it can also be seen that 7 - r = 
o , ( T - ~ / ~ )  0 = O,((T - TI)-'I2).Because 7 =and 8 -
/?'PI and 8 = P'61, these results may be viewed as RR 
analogs of (2.9)and (2.7). 

Proof of Theorem 2.1 

Because all relevant quantities will be invariant to nor- 
malizations of & and j,we can assume that some kind 
of normalization has been imposed so that, by Lemma 
2.1, we can also assume that 6 = andcu + o , ( T - ~ / ~ )
P = P + O,(T-l). 

Using the definitions, we first note that explicit forms of 
the variables Hit and Kit (i = 0 , l ) in (2.3)are given by 

( 0, t = T o + p + l ,  . . . ,T 

and 

f 0, t < Tl 

The proof is based on ideas similar to those used in the 
proof of theorem 1 of S&L. 

Define 

and 

The idea is to first obtain asymptotic properties of the LS 
estimator of the "parameters" yl and y2 and then use theo- 
rem 1 of S&L to derive the stated results. To express (2.3) 
in terms of y

-1 
and y,, we transform the variables Hit and 

Kit accordingly and define 

Flit = QfKot 

FlZt = Q'l?-ltPl(P;P,)-l 

e3t = Q'I;TO~P~(PI'P~)-~ 

and 

FZlt = QfKltB(P,8)-l 

FZ2,= Q f H O t ~ ( ~ ' ~ ) - l  

F23t = Q ' I ; T ~ ~ P ( P ' P ) - ~  

F24t = ~ ' H l t b l ( p l b l ) - l .  

Then, setting Fit = [Flit : F1;lzt : Fist] and Fzt = [Fzlt : 
F22t : F~~~: fi2;24t],we can write (2.3) as 

Jt :=Q'A(L)Y~= @layl +F2ty2 +qt, 

t =  1,. . . ,T.  (A. 12) 

From the definitions, it follows that Fit takes nonzero val- 
ues only for a fixed number of time indices t.  

We shall next study the sums of cross-products between 
Fit and the error term qt, which is identical to its counter- 
part in S&L. Thus, 

qt = Q ' E ~- $'6(p - p)'zt-i 

Using this expression, Lemma 2.1, and the previously men- 
tioned property of Fit, it can be seen that 

(A.14) 

For Fzt the corresponding result is 

(A.15) 

where T?' = diag[(T - T I ) - ' / ~ I: T - ' / ~ I: TP3l2I: 
T - ~ / ~ I ]and the partition is conformable to that of Fzt. 
To justify (A. 15), note first that for F22t,  F23 t ,  FZ4t the re- 
sult is obtained directly from S&L. When (1.8)holds with 
a1 < 1, (A.15)can be justified for Fzlt in the same way as 
for F2z t  because F21t = F 2 2 , t - ~ l + 1  for t > TI and 0 for 
t = 1 , .  . . ,TI - 1. If (1.8) holds with a1 = 1, the desired 
result can be obtained by using arguments similar to those 
that can be used to obtain (A.lO). 

The next step is to show that the standardized moment 
matrix of the auxiliary regression model (A.12) converges 
in probability to a positive definite limit, which in conjunc- 
tion with (A.14) and (A.15) shows that T and 9 , the LS 

-1 -2 
estimators obtained from (A.12),satisfy 

The derivations needed are based on Lemma 2.1 and argu- 
ments similar to those used by S&L. 

Because the LS estimators and T are obtained by re- 
placing the parameters pi and& in th~iefinitions of yl and 
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y by the LS estimators Pi and J i ,  respectively, it follows 

from (A.16) that Pi = OP(1)and ii = OP(1)(i = 0 , l ) .  
From this and Lemma 2.1, one obtains (2.4H2.9) in the 
same way as in the proof of theorem 1 of S&L. For exam- 
ple, (2.7) follows from 

As to the proof of (2.10), it is possible to use the defini- 
tions of Fit and Pztand again reduce the problem to that 
considered by S&L. Thus the proof is complete. 

Proof of Theorem 3.1 

We shall only give an outline of the proof because de- 
tails are similar to those of S&L and L&S. First note the 
identity 

2t = xt - (Po - Po) - ( P l  - Pl)t 

which, in conjunction with the assumed consistency proper- 
ties of the estimators ,8,&, and fi, as well as the consistency 
results of the estimators Pi and ji (i = 0 , l )  obtained from 
Theorem 2.1, will be central in the subsequent derivations. 
Using these arguments, one can show that 

hrW3l2C it(ii-l = o p ( l ) ,  (A. 19) 

and 

where zt = [x',_,P : Ax',-, : . . .  : AX',-^+^]' and the 
first term on the right side of (A.20)converges weakly to 
P > c Q ~ / ~  [cf. lemma A (ii) of J: B, (s)B,(s)' 
S&L]. These results can be justified in a straightforward 
manner by using (A.17) and the consistency properties of 
the associated estimators. To give a heuristic explanation, 
note that L&S and S&L obtained (A.18)-(A.20)in a model 
without any dummy variables. In that case the effect of the 
estimator jio on the left side of (A.18HA.20)is asymptot- 
ically negligible. Thus, when a1 < 1 in (1.8),the proper- 
ties of the estimator & are similar to those of Po so that it 
should be clear that the effect of the estimator 8 1  on the left 
side of (A. 18HA.20) is also asymptotically negligible. For 
the impulse dummy dot, this is clear in any case because 

60 - 60 = OP(1).When a1 = 1 in (1.8),the step dummy 
dlt behaves very similarly to the impulse dummy dot,which 
explains (A.18)-(A.20)in this case. 

Next, note that the error term et in (3.1) has the repre- 
sentation 

= E t  + aP1(Po- Po) 

The part of the last expression not involving dummy vari- 
ables appeared in the work of L&S and S&L, where it was 
shown that in this case 

Using (A.17)and the consistency properties of the involved 
estimators, it can similarly be shown that (A.21)holds in 
the present context. A heuristic explanation can again be 
obtained by observing that the effect of the estimator ,Lo on 
the left side of (A.21)is asymptotically negligible so that, 
given the properties of the estimators Bo and il,the same 
happens also when the impulse dummy dot and the step 
dummy dlt are included in the model. 

Arguing as in (A.18HA.21),it can also be shown that 

[cf. (A.12) of L&S]. Thus, from (A.18HA.22) it follows 
that we have reduced the problem to that in L&S and S&L 
so that the stated limiting distribution can be obtained in 
the same way as in these works. 

To see that the RR regression estimators of a ,P, and 
R based on (3.1)have the consistency properties stated in 
Lemma 2.1, we first note that results entirely similar to 
those in lemmas A3 and A4 of S&L also hold in the present 
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context. In the former case we have to show that the asymp- 
totic behavior of the second sample moments of P'&, A?,, 
and are similar to those of ,B'xt, Ax,, and Pyxt ex-
cept that the weak limit of the matrix of second sample 
moments of is the same as was obtained in (A.20). 
Using (A.17) and Theorem 2.1, it is straightforward to show 
that this is the case and, because the estimation of did 
not affect the previous results, this is also fairly obvious 
by the heuristic argument used previously. In the case of 
lemma A4 of S&L, we have to show that the second sam- 
ple moments between [2:P : A?:-,] and et in (3.1) are of 
order o,(T- ' /~)(i = 1, . . . ,p), whereas the second sample 
moments between PL?,- and et are of order 0,(1) .Using 
the representation of et given previously and the same argu- 
ments as in the preceding case, it can be seen that this result 
also holds in the present context. After this we can show 
that the RR regression estimators of a,P,  and R based on 
(3.1) have the desired properties. The argument is the same 
as in lemma A.5 of S&L or lemmas 13.1 and 13.2 of Jo- 
hansen (1 995). 

APPENDIX B: DATA SOURCES 

Seasonally unadjusted quarterly data for the period from 
the first quarter of 1975 to the fourth quarter of 1996 (88 
observations) were used for the following variables taken 
from the given sources. The data refer to West Germany 
until 1990(2) and to the unified Germany afterwards. 

Price index: GNP deflator (1991 = 100) from Deutsches 
Institut fur Wirtschaftforschung, Volkswirtschafrliche Ge- 
samtrechnung. The variable p is the logarithm of the price 
index. 

M3: Nominal monthly values from Monatsberichte der 
Deutschen Bundesbank; the quarterly values are the values 
of the last month of each quarter. The variable m is log 
M3 -p. 

GNP: Real "Bruttosozialprodukt" quarterly values 
from Deutsches Institut fur Wirtschafrforschung, Volks-
wirtschafrliche Gesamtrechnung. The variable y is log GNP. 

Average bond rate (Umlaufsrendite) ( R ) :Monthly values 
from Monatsberichte der Deutschen, Bundesbank; the quar- 
terly value is the value of the last month of each quarter. 

Own rate of M3 ( r m ) :The series was constructed from 
the interest rates of savings deposits ( r s )  and the inter- 
est rates of three-months time deposits ( r t )  from Monats-
berichte der Deutschen Bundesbank as a weighted average 
as follows: 

.24rt + .42rs for 1976(1)-1990(2) 
r m  = { 

.30rt + .33rs for 1990(3)-1996(4) 

The weights are chosen according to the relative shares of 
the corresponding components of M3. The quarterly value 
is the value of the last month of each quarter. 

Interest rate spread: r = R - rm.  

[Received October 1998. Revised November 1999.1 
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